Refine Your Search

Topic

Search Results

Technical Paper

HCCI Gas Engine: Evaluation of Engine Performance, Efficiency and Emissions - Comparing Producer Gas and Natural Gas

2011-04-12
2011-01-1196
The Technical University of Denmark, DTU, has constructed, built and tested a gasifier [1, 11] that is fueled with wood chips and achieves a 93% conversion efficiency from wood to producer gas. By combining the gasifier with an internal combustion engine and a generator, a co-generative system can be realized that produces electricity and heat. The gasifier uses the waste heat from the engine for drying and pyrolysis of the wood chips while the produced gas is used to fuel the engine. To achieve high efficiency in converting biomass to electricity it necessitates an engine that is adapted to high efficiency operation using the specific producer gas from the DTU gasifier. So far the majority of gas engines of today are designed and optimized for SI-operation on natural gas.
Technical Paper

Heat Loss Analysis for Various Piston Geometries in a Heavy-Duty Methanol PPC Engine

2018-09-10
2018-01-1726
Partially premixed combustion (PPC) in internal combustion engine as a low temperature combustion strategy has shown great potential to achieve high thermodynamic efficiency. Methanol due to its unique properties is considered as a preferable PPC engine fuel. The injection timing to achieve methanol PPC conditions should be set very close to TDC, allowing to utilize spray-bowl interaction to further improve combustion process in terms of emissions and heat losses. In this study CFD simulations are performed to investigate spray-bowl interaction for a number of different piston designs and its impact on the heat transfer and the overall piston performance. The validation case is based on a single cylinder heavy-duty Scania D13 engine with a compression ratio 15. The operation point is set to low load 5.42 IMEPg bar with SOI -3 aTDC.
Journal Article

How Hythane with 25% Hydrogen can Affect the Combustion in a 6-Cylinder Natural-gas Engine

2010-05-05
2010-01-1466
Using alternative fuels like Natural Gas (NG) has shown good potentials on heavy duty engines. Heavy duty NG engines can be operated either lean or stoichiometric diluted with EGR. Extending Dilution limit has been identified as a beneficial strategy for increasing efficiency and decreasing emissions. However dilution limit is limited in these types of engines because of the lower burnings rate of NG. One way to extend the dilution limit of a NG engine is to run the engine on Hythane (natural gas + some percentage hydrogen). Previously effects of Hythane with 10% hydrogen by volume in a stoichiometric heavy duty NG engine were studied and no significant changes in terms of efficiency and emissions were observed. This paper presents results from measurements made on a heavy duty 6-cylinder NG engine. The engine is operated with NG and Hythane with 25% hydrogen by volume and the effects of these fuels on the engine performance are studied.
Technical Paper

Impact of Multiple Injection Strategies on Performance and Emissions of Methanol PPC under Low Load Operation

2020-04-14
2020-01-0556
There is growing global interest in using renewable alcohols to reduce the greenhouse gases and the reliance on conventional fossil fuels. Recent studies show that methanol combined with partially premixed combustion provide clear performance and emission benefits compared to conventional diesel diffusion combustion. Nonetheless, high unburned hydrocarbon (HC) and carbon monoxide (CO) emissions can be stated as the main PPC drawback in light load condition when using high octane fuel such as Methanol with single injection strategy. Thus, the present experimental study has been carried out to investigate the influence of multiple injection strategies on the performance and emissions with methanol fuel in partially premixed combustion. Specifically, the main objective is to reduce HC, CO and simultaneously increase the gross indicated efficiency compared to single injection strategy.
Journal Article

Influence of Injection Strategies on Engine Efficiency for a Methanol PPC Engine

2019-09-09
2019-24-0116
Partially premixed combustion (PPC) is one of several advanced combustion concepts for the conventional diesel engine. PPC uses a separation between end of fuel injection and start of combustion, also called ignition dwell, to increase the mixing of fuel and oxidizer. This has been shown to be beneficial for simultaneously reducing harmful emissions and fuel consumption. The ignition dwell can be increased by means of exhaust gas recirculation or lower intake temperature. However, the most effective means is to use a fuel with high research octane number (RON). Methanol has a RON of 109 and a recent study found that methanol can be used effectively in PPC mode, with multiple injections, to yield high brake efficiency. However, the early start of injection (SOI) timings in this study were noted as a potential issue due to increased combustion sensitivity. Therefore, the present study attempts to quantify the changes in engine performance for different injection strategies.
Technical Paper

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization

2007-04-16
2007-01-0288
Urban traffic involves frequent acceleration and deceleration. During deceleration, the energy previously used to accelerate the vehicle is mainly wasted on heat generated by the friction brakes. If this energy that is wasted in traditional IC engines could be saved, the fuel economy would improve. One solution to this is a pneumatic hybrid using variable valve timing to compress air during deceleration and expand air during acceleration. The compressed air can also be utilized to supercharge the engine in order to get higher load in the first few cycles when accelerating. A Scania D12 single-cylinder diesel engine has been converted for pneumatic hybrid operation and tested in a laboratory setup. Pneumatic valve actuators have been used to make the pneumatic hybrid possible. The actuators have been mounted on top of the cylinder head of the engine. A pressure tank has been connected to one of the inlet ports and one of the inlet valves has been modified to work as a tank valve.
Technical Paper

Investigation of Combustion Characteristics of a Fuel Blend Consisting of Methanol and Ignition Improver, Compared to Diesel Fuel and Pure Methanol

2024-04-09
2024-01-2122
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression.
Technical Paper

Investigation of Partially Premixed Combustion Characteristics in Low Load Range with Regards to Fuel Octane Number in a Light-Duty Diesel Engine

2012-04-16
2012-01-0684
The impact of ignition quality and chemical properties on engine performance and emissions during low load partially premixed combustion (PPC) in a light-duty diesel engine were investigated. Four fuels in the gasoline boiling range, together with Swedish diesel (MK1), were operated at loads between 2 and 8 bar IMEPg at 1500 rpm, with 50% heat released located at 6 crank angle degrees (CAD) after top dead center (TDC). A single injection strategy was used, wherein the start of injection (SOI) and the injection duration were adjusted to achieve desired loads with maintained CA50, as the injection pressure was kept constant at 1000 bar. The objective of this work was to examine the low-load limit for PPC at approximately 50% EGR and λ=1.5, since these levels had been suggested as optimal in earlier studies. The low-load limits with stable combustion were between 5 and 7 bar gross IMEP for the gasoline fuels, higher limit for higher RON values.
Journal Article

Investigation of Particle Number Emission Characteristics in a Heavy-Duty Compression Ignition Engine Fueled with Hydrotreated Vegetable Oil (HVO)

2018-04-03
2018-01-0909
Diesel engines are one of the most important power generating units these days. Increasing greenhouse gas emission level and the need for energy security has prompted increasing research into alternative fuels for diesel engines. Biodiesel is the most popular among the alternatives for diesel fuel as it is biodegradable and renewable and can be produced domestically from vegetable oils. In recent years, hydrotreated vegetable oil (HVO) has also gained popularity due to some of its advantages over biodiesel such as higher cetane number, lower deposit formation, storage stability, etc. HVO is a renewable, paraffinic biobased alternative fuel for diesel engines similar to biodiesel. Unlike biodiesel, the production process for HVO involves hydrogen as catalyst instead of methanol which removes oxygen content from vegetable oil.
Journal Article

Investigation of Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine Operated with Pre-Chamber Spark Plug and Dilution with Excess Air and EGR

2012-09-24
2012-01-1980
This article deals with application of turbulent jet ignition technique to heavy duty multi-cylinder natural gas engine for mobile application. Pre-chamber spark plugs are identified as a promising means of achieving turbulent jet ignition as they require minimal engine modification with respect to component packaging in cylinder head and the ignition system. Detailed experiments were performed with a 6 cylinder 9.4 liter turbo-charged engine equipped with multi-point gas injection system to compare performance and emissions characteristics of operation with pre-chamber and conventional spark plug. The results indicate that ignition capability is significantly enhanced as flame development angle and combustion duration are reduced by upto 30 % compared to those with conventional spark plugs at certain operating points.
Technical Paper

Investigation of the Effect of Glow Plugs on Low Load Gasoline PPC

2020-09-15
2020-01-2067
Low temperature combustion (LTC), is a promising alternative for combustion engines, because it combines the positive aspects of both CI and SI engines, high efficiency and low emissions. Another positive aspect of LTC is that it can operate with gasoline of different octane ratings. Still, higher octane gasolines prove to be difficult to operate at low load conditions leading to high combustion instability (COV) that leads also to high emissions. This drawback can be reduced by increasing the intake air temperature or increasing compression ratio, but it is not a viable strategy in conventional applications. For a diesel engine running under LTC conditions, a possibility is to use the existing hardware, glow plugs in this case, to increase the in-cylinder temperature at low loads and facilitate an improved combustion event.
Technical Paper

Literature Review on Dual-Fuel Combustion Modelling

2019-09-09
2019-24-0120
In the search for low greenhouse gas propulsion, the dual fuel engine provides a solution to use low carbon fuel at diesel-like high efficiency. Also a lower emission of NOx and particles can be achieved by replacing a substantial part of the diesel fuel by for example natural gas. Limitations can be found in excessively high heat release rate (combustion-knock), and high methane emissions. These limitations are strongly influenced by operating parameters and properties of the used (bio)-gas. To find the dominant relations between fuel properties, operating parameters and the heat release rate and methane emissions, a combustion model is beneficial. Such a model can be used for optimizing the process, or can even be used in real time control. As precursor for such a model, the current state of art of dual fuel combustion modelling is investigated in this work. The focus is on high speed dual fuel engines for heavy duty and marine applications, with a varying gas/diesel ratio.
Technical Paper

Loss Analysis of a HD-PPC Engine with Two-Stage Turbocharging Operating in the European Stationary Cycle

2013-10-14
2013-01-2700
Partially Premixed Combustion (PPC) has demonstrated substantially higher efficiency compared to conventional diesel combustion (CDC) and gasoline engines (SI). By combining experiments and modeling the presented work investigates the underlying reasons for the improved efficiency, and quantifies the loss terms. The results indicate that it is possible to operate a HD-PPC engine with a production two-stage boost system over the European Stationary Cycle while likely meeting Euro VI and US10 emissions with a peak brake efficiency above 48%. A majority of the ESC can be operated with brake efficiency above 44%. The loss analysis reveals that low in-cylinder heat transfer losses are the most important reason for the high efficiencies of PPC. In-cylinder heat losses are basically halved in PPC compared to CDC, as a consequence of substantially reduced combustion temperature gradients, especially close to the combustion chamber walls.
Technical Paper

Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1093
An increasing need to lower greenhouse gas emissions, and so move away from fossil fuels like diesel and gasoline, has greatly increased the interest for methanol. Methanol can be produced from renewable sources and eliminate soot emissions from combustion engines [1]. Since compression ignition (CI) engines are used for the majority of commercial applications, research is intensifying into the use of methanol, as a replacement for diesel fuel, in CI engines. This includes work on dual-fuel set-ups, different fuel blends with methanol, ignition enhancers mixed with methanol, and partially premixed combustion (PPC) strategies with methanol. However, methanol is difficult to ignite, using compression alone, at low load conditions. The problem comes from methanol’s high octane number, low lower heating value and high heat of vaporization, which add up to a lot of heat being needed from the start to combust methanol [2].
Technical Paper

Multi-Cylinder Adaptation of In-Cycle Predictive Combustion Models

2020-09-15
2020-01-2087
Adaptation of predictive combustion models for their use in in-cycle closed-loop combustion control of a multi-cylinder engine is studied in this article. Closed-loop combustion control can adjust the operation of the engine closer to the optimal point despite production tolerances, component variations, normal disturbances, ageing or fuel type. In the fastest loop, in-cycle closed-loop combustion control was proved to reduce normal variations around the operational point to increase the efficiency. However, these algorithms require highly accurate predictive models, whilst having low complexity for their implementation. Three models were used to exemplify the proposed adaptation methods: the pilot injection’s ignition delay, the pilot burned mass, and the main injection’s ignition delay. Different approaches for the adaptation of the models are studied to obtain the demanded accuracy under the implementation constraints.
Technical Paper

Numerical Estimation of Asymmetry of In-Cylinder Flow in a Light Duty Direct Injection Engine with Re-Entrant Piston Bowl

2017-10-08
2017-01-2209
Partially premixed combustion (PPC) can be applied to decrease emissions and increase fuel efficiency in direct injection, compression ignition (DICI) combustion engines. PPC is strongly influenced by the mixing of fuel and oxidizer, which for a given fuel is controlled mainly by (a) the fuel injection, (b) the in-cylinder flow, and (c) the geometry and dynamics of the engine. As the injection timings can vary over a wide range in PPC combustion, detailed knowledge of the in-cylinder flow over the whole intake and compression strokes can improve our understanding of PPC combustion. In computational fluid dynamics (CFD) the in-cylinder flow is sometimes simplified and modeled as a solid-body rotation profile at some time prior to injection to produce a realistic flow field at the moment of injection. In real engines, the in-cylinder flow motion is governed by the intake manifold, the valve motion, and the engine geometry.
Technical Paper

Numerical Investigation of Methanol Ignition Sequence in an Optical PPC Engine with Multiple Injection Strategies

2019-09-09
2019-24-0007
Methanol is a genuine candidate on the alternative fuel market for internal combustion engines, especially within the heavy-duty transportation sector. Partially premixed combustion (PPC) engine concept, known for its high efficiency and low emission rates, can be promoted further with methanol fuel due to its unique thermo-physical properties. The low stoichiometric air to fuel ratio allows to utilize late injection timings, which reduces the wall-wetting effects, and thus can lead to less unburned hydrocarbons. Moreover, combustion of methanol as an alcohol fuel, is free from soot emissions, which allows to extend the operation range of the engine. However, due to the high latent heat of vaporization, the ignition event requires a high inlet temperature to achieve ignition event. In this paper LES simulations together with experimental measurements on an heavy-duty optical engine are used to study methanol PPC engine.
Technical Paper

Numerical Optimization of Compression Ratio for a PPC Engine running on Methanol

2019-12-19
2019-01-2168
Partially premixed combustion (PPC) has shown to produce high gross indicated efficiencies while yielding lower pollutant emissions, such as oxides of nitrogen and soot, than conventional diesel combustion. Gasoline fuels with a research octane number (RON) of 60-70 have been proposed as optimal for PPC as they balance the trade-off between ensuring good combustion stability at low engine loads and avoiding excessive peak pressure rise rates at high loads. However, measures have to be taken when optimizing the engine operating parameters to avoid soot emissions. In contrast, methanol has a much lower propensity for soot formation. However, due to a higher RON of methanol the required intake temperature is higher for the same engine compression ratio to ensure auto-ignition at an appropriate timing. Increasing the compression ratio allows a lower intake temperature and improves combustion stability as well as engine brake efficiency.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Journal Article

Optical Characterization of the Combustion Process inside a Large-Bore Dual-Fuel Two-Stroke Marine Engine by Using Multiple High-Speed Cameras

2020-04-14
2020-01-0788
Dual-fuel engines for marine propulsion are gaining in importance due to operational and environmental benefits. Here the combustion in a dual-fuel marine engine operating on diesel and natural gas, is studied using a multiple high-speed camera arrangement. By recording the natural flame emission from three different directions the flame position inside the engine cylinder can be spatially mapped and tracked in time. Through space carving a rough estimate of the three-dimensional (3D) flame contour can be obtained. From this contour, properties like flame length and height, as well as ignition locations can be extracted. The multi-camera imaging is applied to a dual-fuel marine two-stroke engine, with a bore diameter of 0.5 m and a stroke of 2.2 m. Both liquid and gaseous fuels are directly injected at high pressure, using separate injection systems. Optical access is obtained using borescope inserts, resulting in a minimum disturbance to the cylinder geometry.
X